Not the Path to Perdition: The Utility of Similarity-Based Learning
نویسنده
چکیده
A large portion of the research in machine learning has involved a paradigm of comparing many examples and analyzing them in terms of similarities and differences, assuming that the resulting generalizations will have applicability to new examples. While such research has been very successful, it is by no means obvious why similarity-based generalizations should be useful, since they may simply reflect coincidences. Proponents of explanation-based learning, a new, knowledge-intensive method of examining single examples to derive generalizations based on underlying causal models, could contend that their methods are more fundamentally grounded, and that there is no need to look for similarities across examples. In this paper, we present the issues, and then show why similarity-based methods are important. We present four reasons why robust machine learning must involve the integration of similarity-based and explanation-based methods. We argue that: 1) it may not always be practical or even possible to determine a causal explanation; 2) similarity usually implies causality; 3) similarity-based generalizations can be refined over time; 4) similarity-based and explanation-based methods complement each other in important ways.
منابع مشابه
On Calibration and Application of Logit-Based Stochastic Traffic Assignment Models
There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route trigger the application of random utility models in the route choice literature. This paper focuses on path-based, logit-type stochastic route choice models, i...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملProviding a Link Prediction Model based on Structural and Homophily Similarity in Social Networks
In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1986